Sitemap

A list of all the posts and pages found on the site. For you robots out there is an XML version available for digesting as well.

Pages

Posts

Future Blog Post

Published:

This post will show up by default. To disable scheduling of future posts, edit config.yml and set future: false.

Blog Post number 4

Published:

This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.

Blog Post number 3

Published:

This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.

Blog Post number 2

Published:

This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.

Blog Post number 1

Published:

This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.

portfolio

publications

Time-Reversal Enhanced Dynamic Causality Distribution Learning and Its Application in Identifying Dynamic ECNs in MCI Patients Permalink

Published in IEEE Transactions on Biomedical Engineering, 2024

Objective: Dynamic causal influences between brain regions are crucial for understanding the temporal variation and fluctuation of the interaction in human brain. However, recent causal discovery approaches often focus on fixed causality under directed acyclic graph constraints, and do not infer the dynamic and fluctuating nature of causality, which commonly exists in the brain. Methods: We propose a causality learning framework with evolving distribution for non-stationary and non-linear systems. Based on this framework, a time-reversal enhanced dynamic causality distribution learning (TRDCDL) model is constructed, which integrates spatio-temporal information to identify evolving distributional sparse interactions in data. Results: TRDCDL is validated in two synthetic models, which show the accuracy in learning both linear and non-linear causality within synthetic data. We further apply TRDCDL to the Alzheimer’s Disease Neuroimaging Initiative dataset and infer dynamic effective connectivity networks (dECNs) among two stages of mild cognitive impairment (MCI). Conclusion: The results reveal significant differences in dECNs between brain regions across the these stages, indicating that dECNs can serve as reliable neuromarkers for distinguishing different stages of MCI. Significance: Significant reductions in dynamic causal influences within the default mode network and bilateral limbic network, along with few increased connectivity, reflect neurodegeneration and changing patterns of dECNs as MCI progresses.

talks

teaching

Teaching experience 1

Undergraduate course, University 1, Department, 2014

This is a description of a teaching experience. You can use markdown like any other post.

Teaching experience 2

Workshop, University 1, Department, 2015

This is a description of a teaching experience. You can use markdown like any other post.